
OSEC-II Project Technical Report
98/10/06 16:23

2

OSEC-II Project Technical Report

Development of OSEC (Open System Environment for Controller)

OSE Consortium

< TABLE OF CONTENTS >
1 SUMMARY OF OSE PROJECT GROUP ACTIVITIES.. 6

1.1 ACTIVITIES AND AN OUTCOME ... 6
1.2 ORGANIZATION .. 7
1.3 OUTLINE OF OSEC-I PROJECT ... 7
1.4 FROM OSEC-I TO OSEC-II.. 8

2 THE BASIC IDEA OF OSEC ARCHITECTURE... 10

2.1 TARGETS OF OSEC ARCHITECTURE ... 10
2.2 PRINCIPAL POLICY OF SETTING OSEC ARCHITECTURE... 11
2.3 SUPPORTING TECHNOLOGIES.. 11

3 AN OVERVIEW OF OSEC ARCHITECTURE ... 12

3.1 CONTROLLER SOFTWARE AS SOFTWARE COMPONENT: OSEC API............................... 12
3.2 STANDARD MACHINE MODEL FOR OPERATIONAL SOFTWARE: MACHINE RESOURCE

OBJECTS... 13
3.3 PROCESS METHOD DESCRIPTION LANGUAGE: OSEL ... 15
3.4 INTERFACE OF MACHINE TOOL FOR MANUFACTURING NETWORK 16

4 IMPLEMENTATION MODEL WITH FUNCTION GROUPS AND OSEC-API 18

4.1 IMPLEMENTATION MODEL.. 18
4.2 HUMAN MACHINE INTERFACE FOR MACHINE OPERATION ... 18
4.3 RESOURCES MANAGEMENT .. 19
4.4 MOTION GENERATION... 23
4.5 MACHINE CONTROL.. 25

4.5.1 Function .. 25
4.5.2 Aims and Policy .. 25
4.5.3 Internal Make-Up .. 26
4.5.4 Machine Control API ... 26
4.5.5 Problems... 26

4.6 DEVICE CONTROL .. 27
4.6.1 Servo Device... 27
4.6.2 PLC Device ... 28

5 OSEL ... 30

5.1 OBJECTIVE .. 30
5.2 BACKGROUND.. 30

5.2.1 Problems of Present NC Language and Language Handling 30
5.2.2 Required Functions... 31

OSEC-II Project Technical Report
98/10/06 16:23

3

5.2.3 Details ... 31
5.2.4 Scope of OSEL ... 33

5.3 CONCEPT .. 34
5.4 OSEL-F ... 35
5.5 MACHINING FEATURE CLASS LIBRARY ... 36

5.5.1 Machining Feature Class Overview .. 37
5.5.2 Geometry Related Class Library ... 38
5.5.3 Sample Code .. 38

5.6 TOOL CLASS LIBRARY .. 39
5.6.1 Outline of the tool class library.. 39
5.6.2 Future focus.. 39
5.6.3 Specification of the tool class library... 39
5.6.4 Example of a tool class library application .. 41

5.7 MACHINE CLASS LIBRARY ... 42
5.8 OTHER STANDARDIZATION ACTIVITIES ... 42

5.8.1 OPTIMAL .. 43
5.8.2 TC184/SC1/WG7.. 43

5.9 OPEN ISSUES .. 45

6 PROTOTYPING SYSTEMS... 46

6.1 OSE DEMONSTRATION SYSTEMS IN JIMTOF 1996.. 46
6.1.1 Station-A ... 49
6.1.2 Station-B ... 50
6.1.3 Station-C... 51
6.1.4 OSEL Station .. 53
6.1.5 Network Stations... 55

7 RESULTS AND ISSUES.. 56

Appendix: Machine Resource Object and Function Block API of OSEC-II
1. Machine Resource Objects
2. Resource Management API
3. Motion Generation API
4. Machine Control API
5. Servo Control API
6. PLC Input / Output API

OSEC-II Project Technical Report
98/10/06 16:23

4

< TABLE OF FIGURES >
Figure 1-1CNC Fundamental Functions ..6
Figure 1-2 Conventional NC...6
Figure 1-3 Organization of OSE Project Group..7
Figure 1-4 OSEC Reference Model ...8
Figure 2-1 Four Environmental Aspects of Open Controller ..10
Figure 3-1 OSEC Architecture Model...13
Figure 3-2 Conceptual View of Machine Resource Objects...14
Figure 3-3 Process Flow and Level of Implementations of OSEL..15
Figure 3-4 Networking CNCs with Manufacturing System ...17
Figure 4-1 Implementation Model for CNC ..18
Figure 4-2 Connection between MpsAxesView Parts and Function Models..19
Figure 4-3 Resources Management around MRO...20
Figure 4-4 Basic Function Domain Object Model (Cord Yourdon Notation) ..20
Figure 4-5 Operation Domain Object Model ..21
Figure 4-6 Control Service Domain Object Model..21
Figure 4-7 Resource Controll Implemention on Shared Memory and APIs ...22
Figure 4-8 Resources Managemerment, Motion Generation, Machine Control, and APIs23
Figure 4-9 Example of Machine Control...25
Figure 4-10 OSEC Servo Device Model...27
Figure 4-11 OSEC PLC Device Model ...28
Figure 5-1 Positioning of the Machinery Description Language for OSEC-I ..32
Figure 5-2 Positioning of OSEL Based on OSEC-II ...32
Figure 5-3 Handling Scope of OSEL ..33
Figure 5-4 Overview of OSEL processing ..34
Figure 5-5 Sample of OSEL-F Machining Program ...36
Figure 5-6 Relationship of Method Calling among Objects ..37
Figure 5-7 Hierarchy of Machining Feature Class..37
Figure 5-8 Hierarchy of Geometric Representation Classes..38
Figure 5-9 Data Groups in the OPTIMAL Interface..43
Figure 5-10 Working Concept of WG7...44
Figure 6-1 OSE Demonstration Systems in JIMTOF 1996 ..46
Figure 6-2 OSEC Implementation Model and Construction of Each Station..47
Figure 6-3 Overall View of Station-A ..49
Figure 6-4 Overall View of Station-B ..50
Figure 6-5 Overall View of Station-C..51
Figure 6-6 Connection of Hardware Blocks ...51
Figure 6-7 OSEL-F Machining Program Created by Using CADKEY（Extract）..53
Figure 6-8 Optimized OSEL-F Process Program (Extract）..54
Figure 6-9 Verificaiton of Cutter Paths by CADKEY...54
Figure 6-10 Network System Configuration ...55

< TABLE LIST >
Table 3-1 Function Groups in OSEC Architecture ...12
Table 6-1 Platform Structure ..49
Table 6-2 Platform Structure ..50
Table 6-3 Platform Structure ..51

OSEC-II Project Technical Report
98/10/06 16:23

5

Foreword

 On December 1994, three machine tool builders -- Toyoda Machine Works,
Toshiba Machine, Yamazaki Mazak --, two information system companies – IBM Japan ,
SML -- , and a controller builder -- Mitsubishi Electric -- have established the project group
OSEC (Open system Environment for Controllers) for an open architecture controller which
will be used as a foundation to build up the next generation controller for the general
factory automation equipment such as CNC. Since then, several companies and body who
agree and collaborate to work for the open FA controller, have joined to OSEC and at
present eighteen companies and one organization are promoting the project lively. As it is
well known to, several open architectures have been proposed in USA and Europe which
will meet flexibly to wide range of FA devices such as a NC machine tools and robots.
OSEC is an abbreviation of an open controller which is proposed by OSE project group as
a result of its works. Main objective of OSEC is to be “open”, and the architecture and the
interface specifications discussed within it will be disclosed in public, and expected to
contribute some day for the standardization of FA equipment for the CALS .
 This document is a Version 2.0 of OSEC (OSEC-II) and it is a revised version of
OSEC Version 1.0 (OSEC-I) published in September,1995. This new revision has also
been released in public in accordance with the open objective of OSEC. We would like to
disclose the result to as many vendors and customers as possible, and would like to
receive wide range of opinions and suggestions to accomplish it.
We firmly believe that if the equipment based upon the OSEC specifications were
prevailed among the world, multiple-vendor environment in its true sense would be realized
and more user oriented and more user friendly open CNC could be freely
chosen among the open market. Collaborating with relating bodies, OSE project will be
going to up-to-date the developing system for open controllers , keeping up the
transparency of its activities so that any bodies or companies could participate freely to it
and inherit the concrete results of its activities.
It is our greatest pleasure if disclosure of this OSEC specifications could give any
contribution to the progress to prepare and develop the environment for the next
generation controller and to activate the relating industries.

List of OSE project group members;
Brother Industries, Fuji Electric, Fuji Machine Manufacturing, IBM Japan,
JSPMI (Japan Society for the Promotion of Machine Industry) ,Karatsu Iron
Works, Komatsu, Kubotech, Mitsubishi Electric, Niigata Enjineering, Nippei
Toyama, SML, Sony Precision Technology, Toshiba Machine, Toyoda Machine
Works, Tsugami, Yamazaki Mazak, Yasunaga, Yuasa

OSEC-II Project Technical Report
98/10/06 16:23

6

1 Summary of OSE Project Group Activities

 Fundamental function of CNC is to be illustrated as a some kind of information
converting device which convert the three dimensional configuration information into the
control information which give motion to the control object (Figure 1-1).

Information Space

Recognition of
Dots, Curve,

and Surface

Virtual M achine Space
(Virtual Axis, Virtual Time)

Creation of
Control

Information

M achine Space
(Real Time)

Creation of
Relative Axis

M ovement

Information of
Design,
M achining Process,
M achine Tools

Driving Device
of

M achine Tool

Numerical Controller of Machine Tool

Input M essage Output Message

 Figure 1-1CNC Fundamental Functions

Many functions to support manufacturing process are available at machine tools
through CNC fundamental functions. So far, these CNC functions have been locked up in
the black-box as shown in Figure 1-2

Operation Control

Trajectory Control

Motion Control

NC Program

Amp

Motor
DI/DO

Parameter

Ladder

 Figure 1-2 Conventional NC

A mission of OSE project is to study and develop the architecture and standard
interface of manufacturing machines for the future open manufacturing system, based on
the fundamental of control.
As a result, it is intended to achieve an open manufacturing environment in which
machines can be freely constructed according to the manufacturing environment and
purposes of the end user, easy to preserve and maintain the machines, and possible to
minimize the life cycle cost.

1.1 Activities and an Outcome
Main activities of OSEC project are shown as follows;

n 1994
Dec OSEC-I project started
n 1995
25 Sept Release of OSEC-I& demonstration
 (at Toyoda Machine Works @Kariya)

OSEC-II Project Technical Report
98/10/06 16:23

7

 OSEC Architecture Version 1.0 (OSEC-I)
 Two test stations conforming to OSEC-I& CAD/CAM station
 Disclosure of OSEC-I specifications through internet home page
 Home page URL http://www.sml.co.jp/OSEC/
Nov. OSEC-IIproject started
 New member of OSE project was publicly recruited
 (18 companies and one organization at April,1997)
n 1996
26Aug. Release of OSEC-II (at JSPMI hall @Shiba Park)
 OSEC Architecture Version 2.0 (OSEC-II)
27～28Aug. Demonstration of OSEC-II systems
 (at JSPMI Technical Research Institute @ Higashi Kurume Tokyo)
 Three test stations conforming to OSEC-II, OSEL system from CAD to real
 machining & remote monitoring through manufacturing network
Nov. Systems conforming to OSEC-II were exhibited at JIMTOF
 (Japan International Machine Tool Fair)

1.2 Organization
Organization of OSEC at a point of April 1997 is shown in Figure 1-3. Steering

committee is a body to decide fundamental policy and exterior activities of OSEC.
Executive committee is an administrative body which works under steering committee to
execute several working activities. There are four working groups in OSEC-II; Control WG,
Human interface WG, Programming WG and Network WG ; these working group have
conducted a study what the additional merits should be in open controllers from each
points of view (i.e. from machine sides, operator sides, CAD sides and manufacturing
network sides). Architecture working group review and confirm the OSEC architecture from
a wide point of view, and it has conducted adjustment between each specifications
proposed from each working groups.

Steering Committee

Executive Committee

Architecture

WG

Control WG MMI WG OSEL WG
Network

WG

 Figure 1-3 Organization of OSE Project Group

1.3 Outline of OSEC-I Project
At OSEC-I, the architecture for open controllers in its true sense was studied

and constructed by defining a reference model shown in Figure 1-4. Within OSEC-I
architecture, controller is defined as a part of manufacturing system, and information
processing procedure from design data to machining process is clarified. More concretely

OSEC-II Project Technical Report
98/10/06 16:23

8

said, manufacturing system , including CNC which have been locked-out as black box, is
divided into several functional layers. These seven layers include a layer to process input
data , a layer to calculate and generate cutter locations, a layer to control machine and so
forth, and the services and capabilities of each layer have been defined.

VII

VI

V

IV

III

I

II

CAD / CAM
Layer

Operation &
Planning

Layer

Communication
Layer

Geometry
Control
Layer

Device
Control
Layer

Electric
Layer

Mechanical
Layer

･Product Design
･Process Planning
･Preparation of NC Programs

･Scheduling
･Line Control
･M onitoring, Quality Control

･Input of Operational Board
･Execution of Process Scheduling
･Display of Process status and W arning

･Generation of Cutter Trajectory
･M odification of Cutting Conditions
･Adjustment for M achine's own information

･Interpolation, Acceleration and Deacce.
･Output of Discrete I/O
･Servo Control and Syncronizing with PLC

･Execution of Commands
･Driving M otor
･Ladder Processing

･M achine
･Optional Units

 Figure 1-4 OSEC Reference Model

In addition, OSEC-I proposed a new FA equipment description language instead
of EIA code (G code) programming, which have been used since 1960s but have been
pointed out its defect in regards to flexibility, expandability and portability. FA equipment
description language is constructed based on the script type programming language which
has a control structures such as an arithmetic expression , repeat, conditional branch. And
it is also intended to equip with functions to describe machine dependent information such
as machine specifications, tool information, fixture information in abstract description
format. It also intend to describe free curves/free surfaces directly through its arithmetic
expression and several primitive axis motion commands have been installed. It was also
intended to stimulate part program packaging by increasing libraries composed of macros
and functions.

1.4 From OSEC-I to OSEC-II

OSEC-II Project Technical Report
98/10/06 16:23

9

Architecture Reference Model of OSEC- I was intended to clarify the information
processing procedure from design process to machining process. Manufacturing process ,
including CNC which have been treated as black-box, was divided into several layers, and
services and capabilities of each layer was defined.

However, this reference model is rather too abstract to install open controllers in practice.
In OSEC-II, reference model have been seperated into following three categories – the
abstract model (OSECI),the architecture model in which functions and interface is clearly
defined, and the installation model on which hardware and software can be easily mapped
in practice. Several software parts for control modules and machine resource object model
for a human-machine interface have been produced from these architecture models.

FA equipment description language of OSEC-I have been mainly intended to control
manufacturing equipment, and its main target was to increase flexibility , expandability of
expression and portability of the programming language, which EIA code is lacked of. Part
programming description language of OSEC- II i.e. OSEL, is further more upgraded in that
machining methods have been packaged in a class library so that machining know-how
necessary to make efficient use of machine tools can be circulated in an open market as
a software modules. The methods to define machining procedure for several machining
features such as holes or grooves have been discussed.
If we figure the part programming language to the computer programming languages, EIA
code may be compared to a low level assembly language, FA equipment description
language may be compared to a flexible and expandable C language, and OSEL may be
compared to an object oriented C++ language which enables and promotes software
packaging.

OSEC-II Project Technical Report
98/10/06 16:23

10

2 The Basic Idea of OSEC Architecture

2.1 Targets of OSEC Architecture
The OSEC Architecture is defining the industrial machine controllers in the style

of standard platform, and is open for public. The purpose of setting this open architecture
is to provide end users, machine makers, controller vendors, software venders, system
integrators, etc. the means with which they can add their own unique values to the
industrial machines, and hence to promote the technical and commercial development of
the industrial machines.
We identified the value-addition of the industrial machine controllers from several aspects
of their environments; i.e. Machine itself, Operator, CAD System, and Network System
(Figure 2-1). We then discussed about OSEC architecture so that the architecture can
make it easier to created those added values. This approach naturally led us to the
definition of the OSEC architecture of open controllers as the mechanism which unites and
coordinates the machine, the operator, the CAD system and the network into an well
organized system.

Open
Controller

Operator

Netw orkCAD System

MACHINE

 Figure 2-1 Four Environmental Aspects of Open Controller

(1) Machine Aspect of Open Controller
Establishing controller software components is an essential factor in making

controller software and hardware partially interchangeable. OSEC API is defined in the
form of message which is exchanged among controller software components representing
the functionality and the real-time cycle. The controller software components are integrated
into a consistent control system by means of this message exchange mechanism.
(2) Operator Aspect of Open Controller

In order to make the efficient development and improvement of operation
handling software, the software development method of "application frame work" is
introduced in OSEC architecture. This approach allows the selective implementation of
man-machine interface system out of wide range of pre-defined components. The
objective of operations, the industrial machines, is collectively defined as the standard
Machine Resource Object. The OSEC operation handling software is developed as to
control this Machine Resource Object, and thus is assured its portability to different
computer system environment.
(3) CAD System Aspect of Open Controller

A new machining description language called OSEL (OSE Language) is
proposed, which describes the machining process based on the pre-defined and
accumulated software components. By this approach, the development of machining
software which produces the parts defined by CAD System becomes highly efficient. The
OSEL software components, which are created from the concrete knowledge of

OSEC-II Project Technical Report
98/10/06 16:23

11

manufacturing technologies, may also accelerate the shift to a new business paradigm
where the software parts are developed, distributed and procured via various network
systems.
(4) Network Aspect of Open Controller

Among the wide range of network application in manufacturing, we focused on
the monitoring of production line working status. The interface protocol named OFMP
(OSE Floor Management Protocol) is defined to transmit and collect the work status
information of machining sites, and it is proposed to handle this via the Internet. This
aspect of OSEC is still in working status, and accordingly the OFMP definition is not yet
fully given.

2.2 Principal Policy of Setting OSEC Architecture
n OSEC Architecture should be defined as the evolutionary system, not revolutionary.
n The architecture should be software oriented, and be open based on components

defined according to the identified functions, and to the objectives.
n The architecture should be able to cope with multi-platform enfironment.
n The architecture should cope with the controller component standards which are and will

be developed by respective industries. It should also be well positioned in the job and
information flow of manufacturing practice from the upstream of design to the
downstream of shop floors.
n The architecture should be useful in the distributed manufacturing practice. It should

also make the industrial machines useful as production management terminal in the
integrated development and manufacturing environment, such as CALS.

2.3 Supporting Technologies
An open system, in general, will be developed in two levels; the whole system and

its components. The whole system depends its technical level heavily on the supporting
components, but at the same time, it will also possible to absorb the minor change of
components and to keep the system consistency as a whole. This is one of the merits of
open system concept. This feature is important for the digital system design based on
software and hardware technologies, which are quite rapidly evolving at present. In this
project, we considered the progress of the following list of supporting technologies
essential for constructing the industrial machine controller system as an open system.
Naturally, the list is contemporary, and should be revised as the time goes by.

n Software Development Object Oriented Technology
Application Framework
Platform-Independent Processing Paradigm

n -Control System Digital Control
Distributed Control

n Networking Internet / Intranet
n CAD/CAM Technology Feature-Based Modeling

OSEC-II Project Technical Report
98/10/06 16:23

12

3 An Overview of OSEC Architecture

This chapter explains how OSEC defines the functional elements that support the
four aspects of the open controller, which are described in the chapter 2.

3.1 Controller Software as Software Component: OSEC API
The software of manufacturing equipment controller has been treated as a black

box. In contrast, OSEC aims at establishing an open architecture of controller software.
We first revealed the controller software in details by applying the latest software
development method, then arranged and redefined it as software components. To be
concrete, we broke the controller software down to the level at which they can be
implemented, then categorized them concerning their responsibilities, processes, and
real-time requirements. Thus we could reorganize these groups to software components
named "functional blocks". By clarifying the architecture of the software system for the
controller, OSEC aims at enabling the controller software to be plugged and played as
each functional block. Furthermore, we defined "function groups" that put functional blocks
together at the same level in accordance with the functional layers defined in the OSEC-Ⅰ
specification (refer to table 3-1).

 Table 3-1 Function Groups in OSEC Architecture

Function Group Function Block Response Time Service Description
Resource
Management

Resource Manager 32～100msec
Manage and control system behavior by events from
both peripheral devices and software.

OSEL Executor Generate motion by interpreting OSEL-X that is the final
output of OSEL program.

EIA Code Decoder Generate motion by interpreting EIA data.
Motion Generation

Manual Control

8～100msec

Generate motion to manual input like jog or dial.

Machine Control Machine Control 8～16msec
Execute interpolation, acceleration and deceleration,
etc.. Synchronize servo and I/O.

Servo Control 1～2msec Control servo.
Device Control

PLC DI/DO 20～50msec Input/output from/to the ports of PLC.

Table 3-1 summarizes the function groups and their services. It also includes required
real-time orders assumed to reorganize the functional blocks.

Conceptually, we set a policy to make each functional block as software
component in shape of object, then defined messages to the object as interface protocol
(OSEC API). By this policy, each functional block can be encapsulated as an object thus
we do not necessarily deal with how a functional block processes messages to it at
architecture level. This policy assures that developers can freely design and implement
functional blocks. With this encapsulation, companies and individuals can add their own
values independently. Since we do not define the process implementation, we do not have
to define any cohesion of functional blocks either. OSEC architecture defines only the
contents of services of logical functional blocks and messages to them. Therefore, in
OSEC architecture, functional blocks do not form layered structure, but they are connected
to other blocks in parallel through messages (OSEC API) (refer to Figure 3-1).

OSEC-II Project Technical Report
98/10/06 16:23

13

Message Coordination Field

Resource Management

Resource
Control

Motion Generation

EIA Code
Decoder

OSEL Execution Manual Control

Device Control

Servo Control PLC Control

Machine Control

Machine Control

OSEC API

OSEC API

 Figure 3-1 OSEC Architecture Model

In order to enable the plug and play of control component hardware such as motor and I/O,
each hardware device is encapsulated in the device control function group. The only
interface to those hardware devices is messages to corresponding functional block like
servo control or PLC control.

OSEC architecture is abstract as the result of generalization to cover wide range of control
systems as much as possible. Although the structure of functional blocks can be defined
uniquely by OSEC architecture from logical point of view, the system is neither determined
nor limited at its implementation phase because there are so many options for
implementations. These options may include system contrivances such as device driver,
process, and inter process communication, installation mechanisms such as static library
and DLL, hardware factors like selection of controller card, and implementations of
software modules added for execution control and/or monitoring of various software. In
another word, the implementation model to realize the architecture model is not limited to a
particular model. In this way, it is assured to incorporate various ideas in the
implementation model depending on the system size or its hardware implementation
and/or utilization. Figure 4-1 is an implementation model that defines relationship among
functional blocks explicitly.

3.2 Standard Machine Model for Operational Software: Machine Resource Objects
Human machine interface draws high attention from machine tool builders and

end users concerning realization of operational environment customized for equipment.
Since we are setting our goal to assure independence of software for the open controller,
the machine tool builders and end users are expecting that they can construct and/or
customize operational software as desired.

In order to materialize this, the following should be considered:

n Development tools for software components
n Reusability of components such as GUI components
n Interoperability with existing application software products
n Utilization of latest software technologies

OSEC-II Project Technical Report
98/10/06 16:23

14

n Portability of operational software

In order to satisfy the above requirements, OSEC architecture for operational software
introduced "application framework" as development method extensively.

In general, as to a template of operational display software, necessary functions can be
covered well by applying MVC model that divides the software into three domains namely
Model, View and Controller. If the MVC model applies to the operational software for
machine, Model represents a machine to be operated, and View represents a screen and
its components like GUI components, and Controller represents a definition of relationship
between Model and View. Control is a collection of transactions for instance a transaction
to be taken when GUI push button is pressed or a transaction to update the screen upon a
change of state of machine. OSEC defined the machine model as objects and named it
"machine resource objects".

Control
Service

Control Card
CNC

Machine
Resource
Objects

 Figure 3-2 Conceptual View of Machine Resource Objects

The machine resource object aims at enhancement of portability, ease of migration,
reusability, and expandability by standardizing interface to a machine by abstracting the
view of machine from operational applications. The machine resource objects are
encapsulated by the following three interfaces (refer to Figure 3-2):

n Application interface to display and operation
n Interface to plant floor applications such as manufacturing execution system
n Interface to NC control block (NC controller card, PLC, servo, etc.)

We analyzed various resources of machine tools such as axis, spindle, tool, and PLC, then
defined attributes and methods of each resource clearly. Operational software can give a

OSEC-II Project Technical Report
98/10/06 16:23

15

command to a machine or retrieve status of it by passing messages.

The machine resource objects represent a model of machine tool based on the concept of
object. However, the machine resource objects should have variations reflecting the
differences of product types or configurations. Therefore we provided a standard model of
abstract machine and enabled to derive objects of particular machine to reflect the
differences of product types or configurations. As a result, we can utilize the inheritance
concept of the object-oriented method thus the efficiency of development of machine
resource objects for particular machine will be improved.

3.3 Process Method Description Language: OSEL
EIA code, that is widely used for NC controller, was standardized by ISO et al in

1960's as standard data format for machine tools. Now the following problems are pointed
out.

n It depends on each machine regarding to tooling and machine instructions.
n There is no compatibility among NC controller vendors.
n Data required for curved surface or line becomes huge.
n It is difficult for users to expand or improve it.

In addition to the resolution of the above problems, the purpose of OSEL is to propose a
technique to package and reuse the inherent technologies for production and processing
accumulated by end users and machine tool builders. This means we propose a significant
paradigm shift for new business environment for the future industrial society focusing on
networking in that the distribution and procurement of inherent manufacturing technologies
captured in software are available.
Figure 3-3 explains the process of OSEL.

OSEL-F
Program

OSEL-I
Program

OSEL-X
Program

Tool Path Generation
Tool Radius Offset

Tooling
Process Conditions

Coordinates Trns.
Motion Range Check

Tool Length Offset
Process Conditions
Real I/O Commands

OSEL
Executior
(OSEL-EX)

1) 2) 3)

Process
Feature
Class

Library

Tool
Class

Library

Machine
Class

Library

 Figure 3-3 Process Flow and Level of Implementations of OSEL

In OSEL-F (Feature OSEL) that is highest level of description, a part program is given in
the form of description of process feature like hole or groove. An example of process
feature description is "create a perforation hole with drill". OSEL-F is translated into OSEL-I
(Intermediate OSEL) by using a process feature class library and a tool class library.
OSEL-I is an intermediate description and is independent from individual machine. OSEL-I

OSEC-II Project Technical Report
98/10/06 16:23

16

is translated into OSEL-X (eXecutable OSEL) using a machine class library. OSEL-X is
dependent on individual machine. OSEL-X program interpretation (OSEL EXecutor:
OSEL-EX) and following processes require real-time processing.

Process method that is independent from individual machine is defined as methods of
classes that are based on process feature like hole, groove, or side face. Machine tool
builders and end-users can add their own processing know-how by adding classes derived
from base classes. In the machine class library, machine dependent process expansion is
described as method. An example of such expansion is a translation from physical
machine coordination into virtualized program coordination or a treatment of real I/O
instruction.

As to the implementation of OSEL system to the open controller, the developer can select
from three implementation models indicated in figure 3-4 based on the system
configuration of the controller and/or user requirements. In the implementation model 1),
the controller receives OSEL-F program that is highest abstraction level, and is responsible
for program translation to motion control. An advanced controller with CAD/CAM may take
this configuration. In the implementation model 3), the controller receives OSEL-X as
executable program. This configuration can be implemented in low power system.

We evaluated OSEL by implementing it in JAVA.

3.4 Interface of Machine Tool for Manufacturing Network
As to the connection between the existing CNC and manufacturing execution

system, it is difficult for us to connect a machine tool to a manufacturing network
application since neither CNC's nor manufacturing execution systems have standardized
interface. Therefore, developers have had to implement the interface between a machine
tool and a networking application by utilizing additional sensors and/or POP terminals.

Emergence of PC based open controllers has made construction and operation of FA
system more efficient since machine tools will be integrated into a networking application
and will exchange information with remote machine tools.

What is important to construct a manufacturing network including machine tools are to
realize multi-vendors environment to procure network hardware and software. It is also
important that the machine tools provide a common interface for network.

In order to realize multi-vendors environment, we selected TCP/IP as a network protocol
and WEB browser for GUI applications on the network. We also defined a network object
for machine tools in order to provide a common interface for network. A plant floor
management application can communicate with machine tools in common interface. The
network object exchanges messages with the machine resource objects described in
section 3.2.

OSEC-II Project Technical Report
98/10/06 16:23

17

Application

WEB Server
Equipment Monitor
Job Instraction

WIP Control
Program Management

Maintenace
Quality Control

Part Program

CNC

Network Object

CNC

Network Object

CNC

Network Object

Web browser Web browser

Internet/Intranet

Process Data

 Figure 3-4 Networking CNCs with Manufacturing System

OSEC-II Project Technical Report
98/10/06 16:23

18

4 Implementation Model with Function Groups and OSEC-API

In chapter 4, the process of designing an architecture of implementation model
based on function groups which are defined for some specific purposes, finally
implementing it on a micro-computer based controller with hardware and software, are
described.

4.1 Implementation Model
In OSEC- II, the function groups composing the open CNC are defined, and then

the architecture is defined upon these function groups.
An implementation model is defined upon the following 5 function groups:
l HMI (Human Machine Interface) function groups
l Resources management function groups
l Motion generation function groups
l Machine control function groups
l Device control (Servo control, PLC-DIDO) function groups

Figure 4-1 shows the implementation model with protocol flow of function groups.

Ethernet

Network
I/F

MMI

Resource
Manager

Manual
Control

EIA
Decoder

OSEL
Executer

Machine
Control

Servo
Control

PLC
DI/DO

Resource Mang. API

Motion Gene. API

Machine Cntrl. API

Device Cntrl. API

 Figure 4-1 Implementation Model for CNC

 4.2 Human Machine Interface for Machine Operation
 HMI serves as the operation interface of open CNC through which external process
can make approaches to various resources of machine tool.
 HMI software parts are build by Application framework for Graphic User Interface. Various

OSEC-II Project Technical Report
98/10/06 16:23

19

resources of machine tools (Machine resources) are defined as abstract object models of
classes. By assigning attributes and methods to respective objects, it become possible to
make approaches to machine resources in an abstract way. Through building the
experimental system, simultaneously with the implementation of Machine Resource
Objects, an application with basic operation functions is also developed and the
effectiveness of Machine Resource Objects as software part is verified.
 The connection between display parts and function models is explained here. The
next example shows the connection between MpsAxesView part, which displays
information about spindle and movable axes, and function model.

MACHINE PROGRAM HANDLE TARGET

 Figure 4-2 Connection between MpsAxesView Parts and Function Models

 The lines connecting display parts and function models, represent messages
between objects. For example, the current position attributes of movable axes in function
models are connected to the machine coordinates display box in display parts, It means
the contents of machine coordinates display boxes will be renewed upon the current
positions changed.

 During the development of experimental system, three different operation panel
applications are developed by the member companies of OSEC HMI work group. Although
they are oriented to the same machine (a Toshiba-made machining center) ,the actually
completed operation panel applications are characteristic of each member, reflecting their
respective views of operation panel functions.

4.2 Resources Management
 Resource Management is arranged on architecture for coordination Machine
Resource Objects ,model of machine tools and actual control system.
The Machine Resource Objects separates applications from control functions and defines
distinctly the interface between them. The important role of Machine Resource Objects is
to provide an environment upon which the machine tool manufacturer or users can easily
integrate their own applications with individual functions.

OSEC-II Project Technical Report
98/10/06 16:23

20

Manufacturing
Network Application

HMI Operation
Application

CAD/CAM
Application

Motion Generation Machine Control

Machine Resource Object

 Figure 4-3 Resources Management around MRO

(1) Summary of Machine Resource Objects
 To model the Machine Resource Objects, the controller's control functions are
classified and modeled into several function groups called "Domain". The domains are
defined as following.

l Basic Function Domain
Basic function domain defines the classes of machine tool and alarm.

OsecMachine

0-n 1

OsecNCMachine

OsecAlarm

 Figure 4-4 Basic Function Domain Object Model (Cord Yourdon Notation)

l Operation Domain
Operation domain provides the operation interface to machine tools. Many of

objects included in this domain are derived from modeled machine parts such as movable
axis, spindle, etc.

OSEC-II Project Technical Report
98/10/06 16:23

21

OsecNCMachine

OsecPalletChanger

OsecNCEngine

OsecNCResource

OsecChipConveyer

OsecCoolant

OsecLinearAxis

OsecAxis

OsecRotationalAxis

OsecSpindle

OsecEIADataDecoder OsecOSELDataDecoder

OsecNCDecoder

OsecToolMagazine

OsecToolChanger

OsecPLC

0-1

0-1

0-1

0-n 0-n

0-n

0-1

0-n

1
1

1

1

1

1

1

1

1

1

1

111

 Figure 4-5 Operation Domain Object Model

l Control Service Domain
 Control Service Domain connects Machine Resource Objects to the controller's
control functions. In OSEC-II, a function block called "Resources Control " is provided to do
the mapping from Machine Resource Objects to motion generation function groups. This
resources control function can be considered as an implementation form of control service
domain.

OsecNCMachine

OsecControlServiceOsecNCResource

1 1

1 1

1

 Figure 4-6 Control Service Domain Object Model

 (2) Implementation
 HMI and network applications’ standardization is implemented by connecting to the
standardized Machine Resource Objects.
 Nevertheless, to actual control systems, there are various forms for the implementation of
machine control and motion generation, so an identical definition is rather difficult.
 Considering this, we call the section which reflects the feedback information like current
positions etc., the instruction information like execution commands, destination position
etc. and the information on machine’s operation state to the Machine Resource Objects,
converts the Machine Resource Objects’ messages like program selection, language
processor’s start/stop, manual operations etc. occurring from HMI into instructions to
motion generation and machine control, as Resources Control.

OSEC-II Project Technical Report
98/10/06 16:23

22

Machine Resource Object

Resource Control

Sheared Memory

Motion Generation Machine control

Device Control

Resource Management API
Motion Generation API

Machine Control API

Device Control API

Manufacturing Network
Application

HMI Operation
Application

CAD/CAM
Application

Machine Control API

 Figure 4-7 Resource Controll Implemention on Shared Memory and APIs

 The connection to Machine Resource Objects, can be implemented as the interface
to all object models, but the interface to machine control, motion generation of actual
control systems is not compatible with object models. The resources control is installed as
a section which makes the resources management of Machine Resource Objects possible
by connecting object models to machine resources models and connecting to motion
generation, machine control by static API.

n Machine Resource Objects
 C++ is selected as the programming language, using IBM Japan’s development tools
for C++. The Machine Resource Objects is installed as a software part utilizable within the
development tools. Using the software parts provided by the Machine Resource Objects,
the function model for the target machine tool can be constructed.
n Virtual NC Card
 Virtual NC Card (VNCCard) implements the interface functions to the resources
management layer through common memory. It converts commands issued from each
object of the Machine Resource Objects into command interface in common memory,
reads various data for control functions from the periodical watching data section in
common memory and write attribute members of the corresponding object among the
Machine Resource Objects.
n Common Memory & Resources Control
 Common Memory serve as the interface between virtual NC card (VNCCard) and
resources control functions. 2 blocks of common memory are available for each
communication direction respectively, two types of data transactions are carried out as
following

l Data, like commands or alarms, which must be transferred certainly between the
Machine Resource Objects and the resources functions.
l Data, like current positions of moving axes, which need only to be watched at

necessary time. These data are mapped to the periodical watching data section.
n Resources Management API
 API to the Machine Resource Objects through common memory, serving as the

OSEC-II Project Technical Report
98/10/06 16:23

23

interface to the object model, makes the access to resources and attributes of the Machine
Resource Objects possible.

(3) Investigation Subjects
a. OSEC-II’s object model is a definition to the static structure of system. To decide the
system specifications, there is also a necessity of defining the dynamic structure of system
additionally.
b. The Machine Resource Objects is a model expected to adaptable to all machine tools,
but only the adaptability to machine centers and 3-Dimension measurers are verified
through an actually implemented system. The adaptability of this model to machines
different from machine center, such as lathe or laser cutting machine, also needs to be
verified .

4.3 Motion Generation

 Figure 4-8 Resources Managemerment, Motion Generation, Machine Control, and
APIs

The motion-generation function group, interprets processing-related instructions such as
program operations, manual operations, etc. from the resources manager, generates
processing strategies and then converts it into consecutive instructions to machine control
functions. The instructions from the resources manager means CNC processing programs,
manual operation instructions. The instructions to machine control functions handles
motion instructions such as line, arc processing or coordinate operations, etc. The
processing programs are considered as compatible with multiple languages, so it is also
possible to have multiple language interpreter installed.
 (1) Motion Generation API

API managing the execution of motion-generation programs with the functions of
initialization, starting/stopping/restarting program, setting program name, etc. The
motion-generation section generates the actual motions for machine tools through
machine control API after receiving commands from the resources manager. For the
instructions to all language interpreters are processed through this API, the implementation
of multiple language interpreters can be fulfilled through a single API. According to the
attributes of the designated work program, a proper language interpreter will be selected
and activated. OSEL language and EIA are implemented this time.

Manual

operation
EIA decoder ＯＳＥＬ－ＥＸ

ＯＳＥＬ－Ｆ

ＯＳＥＬ－Ｉ

Motion generation

Motion generation API

Resource Management API
Resource

management

Machine control

Machine control API

Multiple mode

select

OSEC-II Project Technical Report
98/10/06 16:23

24

(2) OSEL-Decoder（OSEL-EX）
API managing the execution of OSEL programs with the functions of initializing

OSEL decoder, starting/stopping/restarting program, setting program name, etc. It will be
called as motion-generation API when OSEL program is executed.
(3) EIA-Decoder

API managing the execution of EIA programs with the functions of initializing EIA
decoder, starting/stopping/restarting program, setting program name, etc. It will be called
as motion-generation API when EIA program is executed.

OSEC-II Project Technical Report
98/10/06 16:23

25

4.4 Machine Control
4.4.1 Function

Machine Control generates driving commands to servo motors like X,Y,Z axis or
spindle, discrete commands to I/O units like valve or lamp, by operational commands from
the upper layer. Still more, This module gets the status of a servo system which is the
position or speed or angle data and so on, the information of PLC which is on/off data of
I/O units and the result of relay ladder logic. Their status and information are used in
Machine Control module itself for synchronization processing and transferred to upper
modules.

4.4.2 Aims and Policy
In the phase of the construction of prototyping system after the decision of system

architecture and interfaces of the function groups, it is most right way to implement the
functional module in PC as software from a open oriented point of view. Its development
was considered that this software modules would be the model for the future because of
there was no public example to be referred.

Machine Control

Execution Mode
manager

Execution Control

Motion control PLC command
control

Pre-processing

Data Receiving

received data

block data

Machine Control interface (DLL)

PLC
interface

Servo
interface

Resource Ｃｏｎｔｒｏｌ

Machine Control interface (shared memory)

ＯＳＥＬ ＥＩＡ

 Figure 4-9 Example of Machine Control

The real-time ability of general Operating System for PC is some ten milliseconds

OSEC-II Project Technical Report
98/10/06 16:23

26

at best. While the real-time ability for position feedback loop of servo system need some
milliseconds. There is the gap not to fill up between them. There are several ideas about
the functional division for Machine Control and Device Control module. Because of the
above reason, it will be the best way that the generation of motion commands as position
or speed control is in Machine Control module, and the feedback loop control is in Device
Control module. And because of the difference of the real-time ability of Machine Control
module and servo devices, it is difficult to synchronize them completely. To cancel the
influence of this difference, buffers are provided between Machine Control module and
servo devices.

4.4.3 Internal Make-Up
The inside of Machine Control is made of 4 functions as below.

(1) an interface of upper layer
(2) generation of data for servo system and its interface
(3) generation of data for PLC system and its interface
(4) synchronization of servo and PLC
Figure 4-9 is an example of implementation.

4.4.4 Machine Control API
Machine Control API is an interface specification of Machine Control module.

They are classified in six groups.
(1) Machine Control command
(2) Mode Control command
(3) Axis Control command
(4) DI/DO Control command
(5) Get information command
(6) Alarm command

4.4.5 Problems
From the point of view of functional classification, it is necessary to construct an

architecture which can build in an interpolation process and acceleration/deceleration
patterns, and to make module of them. Still more, it is necessary to construct an
architecture which can make a subsystem of machine motion like turning of arm and
spindle control in ATC (Automatic Tool Changing) motion.

From the point of view of compatibility, it is necessary to verify to handle servo
systems or PLC systems with common interfaces. And it is necessary to apply the other
machine except machining center.

OSEC-II Project Technical Report
98/10/06 16:23

27

4.5 Device Control
In a Device Control, the control information in the computer is converted to real

world information for the machine tool equipment. In this specification, we specified the
specification for the servo and PLC devices.
This specification is designed with the following strategy.
 (a) Specification Level
 We specify the interface not at the H/W level but the function level, i.e. , at C or

C++ language level. We specify only the actual parts required to handle various
devices, and we allow specialized tools and settings for the parameters and the
development/debugging environment.

 (b) Real-time
 It is impossible for the personal computer with windowing operating systems to

guarantee real-time functions, such as servo control, as in some real-time operating
system. The Device Control part has the connection function between the soft real-
time world on the personal computer and the hard real-time world on the control target
such as the servo system.

 (c) Multi-Vendor
 This specification allows a multi-vendor environment, which is important when we

want to optimize the assembly of our controller.

4.5.1 Servo Device
(1) General Description

Many operating systems running on PCs, especially windowing systems, do not
have real-time functions sufficient for controlling servo motors or other servo devices
directly. This specification covers the APIs of the real-time servo control part, including
current , speed, and position feedback loop. The modules will be supported by device
vendors.
(2) Model

The OSEC servo device model has three layers: a servo axis, a servo group, and
servo interface as shown in Figure 4-10.
(3) API Functions

The OSEC servo device API has following functions.

Servo
Axis 1

Servo
Axis 3

Servo
Axis 2

Servo Groupe 1

Servo
Axis 1

Servo
Axis 3

Servo
Axis 2

Servo Groupe 2

・・・・・

・・・・・

・
・
・
・
・

Machine
Control

・
・
・

Servo
Axis 1

Servo
Axis 3

Servo
Axis 2

Servo Groupe 1

Servo
Axis 1

Servo
Axis 3

Servo
Axis 2

Servo Groupe 2

・・・・・

・・・・・

・
・
・
・
・

Other
Object Servo

Interface
B

Servo
Interface

A

 Figure 4-10 OSEC Servo Device Model
 (a) Servo Interface Management : Connection between other modules, initialization

OSEC-II Project Technical Report
98/10/06 16:23

28

and configuration management functions with this specification.
 (b) Servo Group Management : Initialization and configuration management of each

servo group.
 (c) Servo Axis Management : Initialization and configuration management of each axis.
 (d) Servo Control : Controls servo devices. It contains cyclic servo commands,

feedback, synchronization and some functions for servo control such as SERVO-
ON/OFF.

(4) Future Problems
In the next step we will investigate the following themes.

 (a) Multi-Vendor Interface : The interface specification for using materials made by
different vendors will be discussed.

 (b) Multi-Function Command : OSEC-II specification supports only cyclic commands
for servo control. If we want advanced control functions such as motor torque control or
accelerate/decelerate pattern control, we must add some upper level control interface.

4.5.2 PLC Device
(1) General Description

PLCs (Programmable Logic Controller) are generally used to control the
sequence logic of peripheral devices in our machine tools. This specification provides the
PLC I/O access functions. From the control program compatibility point of view, the OSEC
PLC device manages the I/O data not as contact number but as a symbolic name.

OSEC
MVi/f
PLC-A

Real
PLC

C

Real
PLC

B

Real
PLC

A

OSEC
MVi/f
PLC-B

OSEC
MVi/f
PLC-C

OSEC-PLC Interface

H/W Vendor Interface

Virtual PLC
B

Virtual PLC
A

Upper Level
Software
Module

A

Upper Level
Software
Module

B

Upper Level
Software
Module

C

 Figure 4-11 OSEC PLC Device Model

(2) Model
The OSEC model is shown in Figure 4-11. The introduction of a logical PLC

guarantees independence from physical PLCs.
(3) API Functions

This API is the interface specification for using PLCs from upper level software
modules.
 (a) PLC Interface Management : Contains interface functions including connections to

upper modules and management of some PLC parameters.
 (b) State Management : Manages the states of PLC.

OSEC-II Project Technical Report
98/10/06 16:23

29

 (c) PLC Data Control : Executes data management, access control, and
synchronization functions.

(4) Future Problems
In the next step we will investigate the following themes.

 (a) Multi-Vendor Interface : The interface specification for using materials made by
different vendors will be studied.

 (b) PLC Data Identifiers : Standard symbols and identifiers for PLC data will be studied.
 (c) PLC Programming/Maintenance Environment : This specification doesn't yet

provide the programming/maintenance environment.

OSEC-II Project Technical Report
98/10/06 16:23

30

5 OSEL

5.1 Objective
OSEL (OSE Language) provides an open framework for describing machining

know-how related to processing as a set of software components. The know-how on
processing is generated and saved by organizations and workers related to the machine
tool industry at the levels of engineering documentation and technical skills. The
processing know-how can be captured as an object, and we focus on the accumulation of
the processing know-how through the construction of class libraries. If a different material
or processing method is used, or processing conditions differ, a user will be able to
eliminate an unnecessary accumulated set of libraries, replacing it with a new processing
library. Other libraries will exist somewhere on the network, and will be available, for
substitution if necessary.

We will construct a framework as a numerical control(NC) language, and will
focus on establishing an interface among functional modules in the OSEC architecture.
Here we will not propose a whole set of processing class libraries, which would expand in
every direction. We believe that it is the duty of manufacturers who are interested in
providing and realizing processing libraries to do so. Instead, we will create a
demonstration version, to show the validity of the framework and the interface.

5.2 Background
5.2.1 Problems of Present NC Language and Language Handling

Today, the format of NC data used to control machine tools is prescribed by the
ISO, and is concise descriptive. However, since this ISO standard was established over 20
years ago, it is difficult to say that is adequately reflects the performance of current
computers, which have brought about remarkable engineering innovations. Furthermore,
there is a tendency nowadays to use macros, in order to reduce the amount of input data,
and also to use complicated functions added by individual CNC manufacturers, As a result,
it has been becoming more difficult to guarantee interchangeability. Some of the current
problems regadrding NC data are as follows:

l The NC data specification was defined when memory was still expensive, in
such a way that a set of NC data must be described by using a limited number of
characters. Thus, the description is not always easy to read.
l NC data does not contain functions that can describe free form curves and free

form surfaces. Therefore, the movements for these shapes have been
transformed into many small linear movements.
l NC data is normally described on several levels: there is a complex operation

description and a simple operation description for use in, say, compound macros
and linear movement, respectively.
l Custom macros are functions expanded by CNC manufacturers, and they have

no compatibility with macros created by other manufacturers. In addition, they
include components that depend on the machine tool type, and identical NC data
cannot be used with to other machine types.
l The dependence on the machine tool type is strong, and the flexibility and

expandability of the descriptions are poor. Consequently, it is difficult to construct
libraries.

In addition to these problems, the growing expectation of an opening up in the area of FA
control equipment has led to demands for ease of integration among CAD/CAM systems,

OSEC-II Project Technical Report
98/10/06 16:23

31

database systems, and other information-processing tools. If these demands are met, it
would be easy to construct an adequate system by integrating software packages and
software components provided by multiple vendors.

5.2.2 Required Functions
For the above reasons, the following features are required in data used to control

machine tools:
1. To provide flexibility and expandability in the description:

l The language used to describe the operation of machine tools should be a
script-type language that is easy to understand.
l A direct specification by numerical equations of free-form curves and free-form

surfaces should be achieved. Defining these curves and surfaces, such as
Bezier function, before processing will reduce the amount of data required give a
better process quality than the conventional approach, which uses a set of NC
data points.
l The ability to use libraries of macro functions for expansion should be

considered.
2. To increase the abstraction level and generality of machine tools, and to reduce the
dependence on machine types:

l The data should be able to handle information on machine-type dependence in
abstraction at the operation description level, such as the specifications of
machine tools (accuracy, speed, etc.), tools for tool handling, jigs for workpiece
offset, and so forth.
l ASCII description should be used, so that components depending on

computational hardware and operating systems can be eliminated.
l The movement description level should be unified to a primitive one, so that

dependence on machine types can be reduced.
3. To ensure compatibility with existing data:

l Compatibility with existing data should be ensured by preparing an NC data
decoder to convert existing data described in G-code and/or CL data.

5.2.3 Details
In OSEC-I, a process program for the operation control was interpreted and then

forwarded in order to control commands as shown in Figure 5-1. The sequence control is
considered to be included in the process.

In OSEC-II, on the other hand, the language name is changed to OSEL, and the
positioning of the process is also changed. The operation control in OSEC-I gives the
impression that it controls the whole NC. In OSEC-II, however, a "resource management"
part is added, which monitors and controls all the resources of an NC. Hence, OSEL can
describe the characteristics of process, and it is now positioned in such a way that it
concentrates on generating a tool path and process conditions based on its description.

OSEC-II Project Technical Report
98/10/06 16:23

32

Program Input

V. Communication

Display / Key-in

Operation Panel

 Event
Handler

IV. Operation Control

Cmd. Library I/O Library

Interpreter

Servo DI/DO
 Control

III. Machine Control

Servo PLC

 Figure 5-1 Positioning of the Machinery Description Language for OSEC-I

Ethernet

Network
I/F

MMI

Resource
Manager

Manual
Control

EIA
Decoder

OSEL
Executer

Machine
Control

Servo
Control

PLC
DI/DO

Resource Mang. API

Motion Gene. API

Machine Cntrl. API

Device Cntrl. API

 Figure 5-2 Positioning of OSEL Based on OSEC-II

OSEC-II Project Technical Report
98/10/06 16:23

33

5.2.4 Scope of OSEL
In the form of OSEL being investigated for implementation in OSEC-II, the

process shape, process material, and process order are assumed to be defined. The
scope of OSEL will handle everything from this information up to outputting to NC controls,
among other functional modules that would be required for the processes, tool paths, and
process conditions (Figure 5-3).

It will be possible to separate the language processor from machine tools as a
software component, and to exchange it, if necessary. The process class libraries will be
also considered to be exchangeable with corresponding specified processes. Hence, it will
be possible to configure the OSEL processor in response to performance improvements in
hardware, advances in tools, and variations in process materials.

 Logging
ofProcess Boundary

 Generation of
Process Senario

 Proce
ssCharacteristic

Shape Data

 OSEL
Program

Control Data

Process
 Model

 Resourc
eManagement

CAD

Machine
 Control

 OSEL
Handler

MMI

OSEL Program
 Generatio
n

Process Method
 Class Library

 Machin
eClass Library

Tool Database

Object Scope of OSEL

OsecOselOpen()

OsecOselStart()

 Figure 5-3 Handling Scope of OSEL

OSEC-II Project Technical Report
98/10/06 16:23

34

5.3 Concept
A computer language system for NC programming should consist of at least two

parts: a language for programmers, in which they describe their machining intentions, and
a control command language, which is interpreted by NC machine controllers to yield
step-by- step machine actions.
The former of these should be able to define the objects to be machined and the method of
machining. When a programmer gives these definitions, he/she may want to concentrate
on the description of the shape to be made and the precision of machining, for example,
rather than the details of machining, such as the assignment of an actual machine to be
used. Moreover, the written program is required to be executable for various actual
machine tool selections and in various conditions. Accordingly, it is desirable that the
program should describe the shapes of the objects and the method of machining, but not
the control details such as the step-by-step machining sequence or the actual tool id.
On the other hand, the control command language should address the individual machine
on which the machining is to be executed, because this language is expected to be directly
executable by an actual machine controller. Typically, the language should be able to
optimize the sequence of machine actions, and to address actual tools in the magazine,
tooling axes, the type of tool path interpolation, the possible feed rate and spindle rate, and
the control of auxiliary mechanisms. Of course, the syntax of the program should be
directly parsed and executed by machine controllers.
In the OSEL language system, the description language is named OSEL-F (Feature) and
the executable language is named OSEL-X (eXecutable). In most cases, a language-
processing system can be developed by using these two languages as input and output
language, respectively. However, if only these two languages are specified, the system
may become quite rigid, and may not be flexible enough, for example to create several
different executable language programs from a single descriptive language program. To
ensure this kind of multi-executable-language flexibility, an intermediate language called
OSEL-I is introduced as a pivot language. It is mostly for the use of the language-
processing system, and may not be visible for end users. However, it is an essential
mechanism for realizing the flexibility and commonality in OSEL language systems.
The OSEL language system is preferably realized as an assembly of functional
components so that the system can keep up with variations and changes in machines,
machining methods, tools, and so on. In the OSEC-II project, object-oriented language
technology was tested to determine its usability for this purpose.

Fig. 5.4 shows an overview of the language processing.

OSEL-F
Program

Cutter Path Gen.
Tool Dia Adj.
Tool Planning

Machining
Condition

Machining
Feature
Class
Library

OSEL-X
Program

OSEL-I
Program

Transformation
Limit Check

Tool Length Adj.
I/O Command

Machine-depe
ndent Class
Library

Tool Class
Library

OSEL
Executor
(OSEL-EX)

 Figure 5-4 Overview of OSEL processing

OSEC-II Project Technical Report
98/10/06 16:23

35

OSEL-F, which is the top-level language, is used to describe machining features
corresponding to machined geometry such as "make a hole with a drill." OSEL-F is
transformed into OSEL-I, which is an intermediate level, independent of machine tools, by
using a machining feature class library and a tool class library. OSEL-I in turn is
transformed into OSEL-X, which depends on the a machine tool and is executable, by
using a machine-dependent class library.

5.4 OSEL-F
This chapter explains OSEL-F, which is a top-level description language. Since

the framework of a programming language is subject to that of Java, the portion proper to
OSEL is described here.
The following are described in an OSEL-F machining program:

l Definitions of machining features, which are objects of machining
l Designation of the machining methods performed to machining features
l Designation of a machining sequence

Machining features are definitions of features such through holes or grooves to be
machined. Machining feature objects are created as objects of machining feature classes
such as the through hole class and the groove class in the machining feature class library
described later. An object's position with respect to a workpiece, its geometry such as the
diameter or the depth of a through hole class, and geometric tolerance information are
defined as its attributes. Subject to a form of the Java language, a conceptual object
creation description is as follows:

MachiningFeature machining_feature_object = new MachiningFeature(attributes);

A machining method is designated by calling a machining method of a defined machining
feature object. Machining methods are defined in each machining feature as object
methods. A conceptual call is described as follows:

machining_feature_object . machining_method(variable_for_machining, ...)

Machining methods like these are called in accordance with a machining sequence.

A machining program written in OSEL-F for drilling is shown in Figure 5-5. In this example,
some parts are omitted for ease of understanding

OSEC-II Project Technical Report
98/10/06 16:23

36

 Figure 5-5 Sample of OSEL-F Machining Program

5.5 Machining Feature Class Library
In this chapter, a machining feature base class library and a geometry base class

library are explained as OSEL specifications. A user can define his/her own derived
classes and methods in accordance with the Java language syntax. Machining feature
objects have machined geometry and tolerance information, and define machining
methods as their methods. There are geometry objects for geometry representation and
geometric calculation, and vector objects for three-dimensional coordinates and calculation
of coordinates and vectors. Tolerance objects have not been adequately discussed as of
the time of writing. The geometry is defined at the time a machining feature object is
created. When a machining method is called, a geometry object associated with the
machining feature object generates a cutter path for machining. The machining feature
object then adds approach/departure motions of a tool to the cutter path, sets machining
conditions with reference to a tool object, calls methods of a machining tool object for
controlling axes and outputs data. The relationship of method-calling among objects is
shown in Figure 5-6.

public class Sample { // A sample program

 public static void main(String args[]) {

 //

 // Position, diameter, depth are defined here.

 //

 ThroughHole hole = new ThroughHole(pos, dia, depth);// Definitions of the machining

feature Through Hole”

 Hole.centerdrilling();

 Hole.drilling();

 }

}

OSEC-II Project Technical Report
98/10/06 16:23

37

NC Program
Machining Feature

Object
Geometry
Object

Vector
Object

Machine Tool
Object

Machining Method

Cutter Path
Generation

Coordinate
Calculation

Coordinates

Cutter Path

Machining Operation

 Figure 5-6 Relationship of Method Calling among Objects

5.5.1 Machining Feature Class Overview
Machining feature classes are categorized into three groups: holes, profiles, and

surfaces. The attributes of the classes are the geometry objects of the machining features
and tolerances, and the methods of the classes are machining methods. The overall
structure of the classes is shown in Figure 5-7.

 Figure 5-7 Hierarchy of Machining Feature Class

OSEC-II Project Technical Report
98/10/06 16:23

38

5.5.2 Geometry Related Class Library
This is a library of classes for geometric representation and its calculation.

Attributes of the classes are parameters for geometric representation and methods of them
are calculation of cutter paths. Overall structure of the classes are shown in Figure 5-8.

 Figure 5-8 Hierarchy of Geometric Representation Classes

5.5.3 Sample Code
 public class ThroughHole extends Hole { //Definition of machining feature "Through

Hole"
 Vect3 position; //attribute: position
 double diameter; //attribute: diameter
 double depth; //attribute: depth
 public ThroughHole(Vect3 pos, double dia, double d) { //constructor of "through

hole"
 position = pos;
 diameter = dia;
 depth = d;
 }

 public void drilling() { 　　　　 　　//Definition of drilling method
 Tool tool = toolfordrilling(diameter); //Selection of tool for drilling
 machining_center.toolchange(tool); //Tool change
 Vect3 initial = getinitial(); //Initial point
 Vect3 reference = getreference(); //Reference point
 Vect3 target = gettarget(); //Target position of through hole
 machining_center.toolmove(initial); //Move to initial point
 machining_center.toolmove(reference); //Move to reference point

OSEC-II Project Technical Report
98/10/06 16:23

39

 machining_center.spindle_on(Osel.CW); //Spindle on (clockwise)
 machining_center.coolant_on(); //Coolant on
 machining_center.toolline(target); //Machining to target point
 machining_center.toolmove(reference); //Return to reference point
 machining_center.spindle_off(); //Spindle off
 machining_center.coolant_off(); //Coolant off
 }

5.6 Tool Class Library
5.6.1 Outline of the tool class library

A tool class library is a library of tools that is referred to by a machining feature
class library or a machine tool class library. The machine feature class library refers to the
tool class library to obtain the name of the tool that is actually installed in the ATC tool
station. The machine tool class library refers to the tool class library to identify the tool size,
geometry, and machining conditions selecting tools whose characteristics match those of
the machining feature.

The main difference between the data in the tool class library and those in general
tool catalogues is the tooling dimensions. The tooling dimensions given in the tool class
library are the dimensions in actual machining conditions, such as the dimensions of tools
with chuck and tool holders. Machining conditions can be modified in accordance with the
actual operation experience, and this experiences can also be registered in the library.

The tool class library can also be extended when new tools are introduced into
the machining system. The tool class library itself is described in the object-oriented
language: Jave. This means that a new tool class having a function that generates an
optimum cutting condition subject to the latest cutting theory can also be easily constructed
in the library. In this case, a user only has to add the new functions to the most similar
existing tool class. However, user may want to generate a new machining feature class
library based on the existing library when he/she uses a completely new type of tool class.

5.6.2 Future focus
The data stored in the tool class library cannot describe all tool dimensions. At

present, it roughly describes only three dimensions such as an edge, a shank, and a
holder. Because of this limitation, it is impossible to calculate a perfect tool collision
problem. It is still possible to apply a rough collision check by using the maximum area
except for the tool edge diameter. If a three-dimensional tool feature is registered in the
library, it becomes possible to realize a more precise collision check. The library may be
able to manage tool wear compensation values. These values can also be referred to by
other class libraries, and can be applied to real-time tool wear control and a forcast of tool
changing time.

5.6.3 Specification of the tool class library
The specification of the tool class library is as follows. This is a temporary

specification, and will be modified and extended in the near future.

package osel;
import java.util.*;
import java.awt.*;
import java.io.*;

OSEC-II Project Technical Report
98/10/06 16:23

40

public class Tool {
// Fields

// Names
protected String toolName; Tool name (tool ID)
protected String toolCode;

// tool size
protected double toolLength; Distance from holder reference (taper shank

reference) to tool edge
protected double availableLength; Effective tool length
protected double diameter; Machining hole diameter
protected double pointAngle; Angle between workpiece and tool edge
protected double shankDiameter; Tool shank diameter
protected double shankLength; Tool shank length
protected double holderDiameter; Tool holder diameter
protected double holderLength; Distance from holder reference to the end-point of tool

holder
protected int teeth; Number of tool teeth
protected double supplementToolLength; Compensation for Z-axis length error caused by tool

length
protected double supplementDiameter; Compensation for tool diameter

protected double freeFeedClearance; Clearance for oblique approach
protected double rapidFeedClearance; Clearance for Z-axis direction approach

// Conditions
protected String material; Workpiece material
protected double spindleSpeed; Spindle speed (revolution)
protected double axialFeedRate;axial direction feed rate
protected double radialFeedRate; Radial direction feed rate
protected double roughAxialDepth; Axial direction rough cutting depth
protected double finishAxialDepth; Axial direction fine cutting depth
protected double roughRadialDepth; Radial direction rough cutting depth
protected double finishRadialDepth; Axial direction fine cutting depth

// Constructors
public Tool();
public Tool(String tn);
public Tool(String mt, String tn);
public Tool(String mt, String tn, String tc);

mt :Workpiece material
tn :Tool name
tc :Tool ID

%In cases where the workpiece material is not specified, the highest priority material listed in the
cutting conditions selected

// Methods
// Sizes

public String getToolName(); Get tool name
public String getToolCode(); Get tool ID
public double getToolLength(); Get tool length from holder reference (taper shank

reference) to tool edge
public double getAvailLength(); Get effective tool length
public double getDiameter(); Get tool diameter
public double getPointAngle(); Get tool edge angle
public double getShankDiameter(); Get tool shank diameter
public double getShankLength();Get tool shank length
public double getHolderDiameter(); Get tool holder diameter
public double getHolderLength(); Get distance from tool shank reference to tool holder's

front end-point
public int getTeeth(); Get tool edge numbers
public void setSuppLen(double l); Set tool wear compensation value(Z axis direction)
public double getSuppLen(); Get tool wear compensation value(Z axis direction)

OSEC-II Project Technical Report
98/10/06 16:23

41

public void setSuppDia(double d); Set tool wear compensation (radial direction)
public double getSuppDia(); Get tool wear compensation (radial direction)
public double getFreeFeedC(); Get clearance for oblique approach
public double setRapidFeedC(); Get Z axis approach clearance

// Conditions
public String getMaterial(); Get workpiece material
public double getSpindleSpeed(); Get spindle speed
public double getAxialFeedRate(); Get axial direction feed rate
public double getRadialFeedRate(); Get radial direction feed rate
public double getRoughAxialDepth(); Get axial direction rough cut depth
public double getFinishAxialDepth(); Get axial direction finish cut depth
public double getRoughRadialDepth();Get radial direction rough cut depth
public double getFinishRadialDepth(); Get radial direction finish cut depth

}

5.6.4 Example of a tool class library application
// example
package osel;
import java.util.*;
import java.awt.*;
import java.io.*;
import osel.*;

// Extend the tool class and identify new end milling class created by the user
class EndmillEx extends Tool {

// Identify the constructor when the tool name, tool ID, and machining method are specified
public EndmillEx(String mt, String tn, String tc, int hc) {

super(mt, tn, tc); // Call super-class constructor
if ((tn.compareTo("D15") == 0) &&
 ((tc.compareTo("") == 0) || (tc.compareTo("EDM15") == 0))) {

toolName = tn; // Tool name
toolCode = "EDM15"; // Tool code (ID)

// Tool dimension
toolLength = 210.5; // Tool length
availableLength = 65.0; // Effective tool length
diameter = 15; // Machining diameter
pointAngle = 180.0; // Tool point angle
shankDiameter = 16.0; // Tool shank diameter
shankLength = 5.0; // Tool shank length
holderDiameter = 70.0; // Tool holder diameter
holderLength = 140.5; // Tool holder length
teeth = 2; // Tool edge number
supplementToolLength = 0.0;// Z-axis offset error compensation
supplementDiameter = 0.0;// Tool diameter error compensation

// Machining condition
if ((mt.compareTo("") == 0) || (mt.compareTo("S45C") == 0)) {

material = "S45C"; // Workpiece material
if (hc == 0) {

// Slotting
spindleSpeed = 560.0;// Spindle revolution
axialFeedRate = 10.0;// Axial direction feed rate
radialFeedRate = 40.0;// Radial direction feed rate
roughAxialDepth = 7.5;// Axial direction rough cutting depth
finishAxialDepth = 3.75;// Axial direction finish cutting depth
roughRadialDepth = 15.0;// Radial direction rough cutting depth
finishRadialDepth = 15.0;// Radial direction finish cutting depth

} else if (hc == 1) {
// Side cut
spindleSpeed = 560.0;// Spindle revolutions

OSEC-II Project Technical Report
98/10/06 16:23

42

axialFeedRate = 190.0;// Axial direction feed rate
radialFeedRate = 190.0;// Radial direction feed rate
roughAxialDepth = 22.5;// Axial direction rough cutting depth
finishAxialDepth = 11.25;// Axial direction finish cutting depth
roughRadialDepth = 2.25;// Radial direction rough cutting depth
finishRadialDepth = 0.75;// Radial direction finish cutting depth

}
}

}
}

// Identify the constructor when the tool name is specified
public EndmillEx(String tn) {

this("", tn, "", 0); // Call same-category constructor
}

// Identify the constructor when tool name and machining method are specified
public EndmillEx(String tn, int hc) {

this("", tn, "", hc); // Call same-category constructor
}

// Identify the constructor when workpiece material and tool name are specified
public EndmillEx(String mt, String tn) {

this(mt, tn, "", 0); // Call same-category constructor
}

// Identify the constructor when workpiece material, tool name, and machining method are specified
public EndmillEx(String mt, String tn, int hc) {

this(mt, tn, "", hc);// Call same category constructor
}

// Identify the constuctor when workpiece material, tool name and tool ID are specified
public EndmillEx(String mt, String tn, String tc) {

this(mt, tn, tc, 0); // Call same-category constructor
}

}

5.7 Machine Class Library
The machine class library has the following functions:

1. Method for OSEL-X output
l Output a command corresponding to MSTB control in EIA code
l Output a command for axis movement control

2. Machine-dependent method
l Limit check for axis stroke
l Limit check for axis speed
l Limit check for spindle speed
l Wear compensation
The machine object called by the machining feature class library exchanges work

coordinates with reference to a machine coordinate system. At this time, the library
compensates for the tool length, checks the limit of axis stroke, the limit of axis speed, and
the limit of spindle speed., and then outputs some commands MSTB and axis movement
control. This class library transforms machining program written by using a machine-
independent machining feature class library into actual machining control commands.

5.8 Other Standardization Activities
This section outlines TC184/SC1/WG7, which is one of the deliberation

organizations of the ISO, and OPTIMAL, which is part of the ESPRIT project as concrete
standardization activities.

OSEC-II Project Technical Report
98/10/06 16:23

43

5.8.1 OPTIMAL
OPTIMAL, which is short for "Optimized Preparation of Manufacturing Information

with Multi-Level CAM-CNC Coupling," is part of ESPRIT project 8643. The participants are
six companies and one research organization. The goal of OPTIMAL is to achieve
consistent flow in CAD-CAM-CNC by means of a module structure, while maintaining the
interface between the product geometric model data and the CNC device. Plans was made
for the development of the programming systems with a modular structure and a data
exchange interface between multiple data groups and the CNC device (Figure 5-9).

 Figure 5-9 Data Groups in the OPTIMAL Interface
 (The source : Definition of the Interface and the Interface Levels）

5.8.2 TC184/SC1/WG7
WG7 (data modeling for integration of physical devices） was formed under

ISO/TC184/SC1 in November 1994. Using mainly the research results of ESPRIT, it is
working toward standardization of the modeling of the data structure for CNC controllers
and usage of the data.

The aims of the standardization are
l To multi-vendorize
l To establish a standardized technique from CAD data through NC programs
l To develop a new open NC language,

OSEC-II Project Technical Report
98/10/06 16:23

44

Data Generating System

MMS Companion Standard P･P and/or STEP

Tool Data Set Geometry Data Set

Machining Statements Technology Data Set

ASCII Encoding Rules

Program Data Set

EXPRESS-G
/EXPRESS

CNC-1 CNC-3CNC-2

Milling M. Milling M. Milling M.

Data Consuming System

 Figure 5-10 Working Concept of WG7
(Source: Japan Society of Mechanical Engineers, seminar text, No. 96-50

"Activities and Expectations for Open Architecture CNC" (in Japanese) p-10,
'96-7-24,Tokyo)

Under the following conditions:
l The target controllers are CNC.
l The target machine is a milling machine tool.
l the target geometric model has 2-2.5 dimensions.

The group is considering the reference model of a CNC device constructed from four
independent data-sets: - geometry, technology, tool, and program - described in
EXPRESS-G. Product data and tool data described according to the international
standards such as STEP are input to the data model (Figure 5-10).
 The final output is an NC program that refers to the tool data-set and the
technology data-set. The geometry data-set is further referred to by the technology data-
set. The geometry data-set consists of data directly gathered from the STEP file. Each
data-set except for the program data-set is described in EXPRESS. In the first stage, the
group is working on confirming a static model. A dynamic model, which is necessary for
real-time processes, will be the subject of the second step. The dynamic model is used to
regenerate the machining process when obstructions (such as changes of geometry
models, tools, machining processes, and machine tools) occur, as they surely will in
practice.

OSEC-II Project Technical Report
98/10/06 16:23

45

References:
n Japan Society for Precision Engineering: 216th seminar text, "The long-awaited open

architecture of CNC" (in Japanese)
n Japan Management Association: Proceedings of the Machine Tool Engineering

Conference, July 1995
n Japan Society of Mechanical Engineers: seminar text No. 96-50, "Activities and

Expectation to Open Architecture CNC, " p-10, 24 July 1996, Tokyo
n ESPRIT Project: Definition of the Interface and the Interface Levels, ESPRIT 8643,

(1995).

5.9 Open Issues
 In OSEC-II, a machining center with three axes is considered to be primary and
holes, grooves, and surfaces are objects of processing. This is because it is currently
important to validate the rationality of the OSEL concept in a simple case rather than in
complex machining. There is a discussion of criteria for defining a hierarchical structure of
a machining feature class. One criterion is to take account of actual cases in making, and
another is to pay maximum consideration to expandability from the viewpoint of information
processing. For example, there are three machining processes for a hole. One requires
simple drilling, one requires profiling, and one requires pocket machining. If we take the
position that machining features should be closely related to machining methods, there
should be three types of machining feature. If we take information processing as our
standpoint, there is a feature whose section is a circle and that is a subclass of concave
geometry, and there are three methods for each machining method. This is based on the
concept that maintainability is secured by an approach in which machining features are
classified by geometry, and machining methods are defined as object methods of the
features. The current OSEL adopts the former position, but the merits and demerits of
these stand points have not been considered sufficiently thoroughly. Furthermore, it is
necessary to think out a method whereby the two positions can coexist.

OSEC-II Project Technical Report
98/10/06 16:23

46

6 Prototyping Systems

 We would define the OSEC specifications, including the function-group-based
architecture, the function-block-based API, OSEL, and MRO, but we think the
implementation should be let free. We suppose that personal computers are basically
selected to implement the open controller and the FA equipment. The OSE exhibition
demonstration systems in JIMTOF 1996 and their S/W and H/W modules are explained in
the 5.1 and in the 5.2 section respectively.

6.1 OSE Demonstration Systems in JIMTOF 1996
 The objective of this project is to define an open system architecture, which can be
realized with present technologies. It is very important to implement the open control
systems using the above system architecture and the OSEC-API in order to confirm their
practicability and to discover any mistakes in the specifications. Through this
implementation process, it can be also confirmed whether flexibility of combination with
other systems will be achieved by replacing a conventional NC by a PC. For these
purposes, the OSE partners developed and exhibited the following prototyping systems for
JIMTOF, 1996. Through this experience, more concrete guidelines for open architecture
controllers will be derived. The prototyping systems were connected to each other by a
local network at the JIMTOF site, and also to world wide network by way of Internet (Figure
6-1).
n Station-A: Machining center consisting of the OSEC modules except a servo and a PLC

board
n Station-B: Machining center consisting of an OSEC HMI module and conventional PC-

based CNC
n Station-C: Instrument machine consisting of the full OSEC modules
n OSEL Station: Station for CAD/CAM integration using OSEL
n Network Station: Stations for "Internet Cyber Factory" networking OSEC control systems
n HMI Station: HMI stations developed with a MTF (Machine Tool Frame Work) tool

OSEL Station

Yamazaki Mazak: East-2

 Feature based CAM
 OSEL Interpretor

Internet Application

Mitsubishi: West-1
and other Booths

Remote CNC Monitoring
Remote Line Monitoring
Applications by TV-camera & PHS

Machine Tool Stations

Toyoda:
Toshiba M.:
Brother:
Sony P.T.:
Shizuoka:

HMI SubSystems

Tsugami:
Nippei Toyama:
Niigata:

Line DB Server

WWW
Server

Ethernet

Internet
East-2
West-1
West-1
West-4
East-3

East-1
East-3
West-1

 Figure 6-1 OSE Demonstration Systems in JIMTOF 1996

 Figure 6-2 shows a comparison of implementation among Station-A, B, and C. The
big three blocks describing Station-A, B, and C show the CNC basic parts and the shading
and horizontal lines indicate the function blocks using the common API among the stations.

OSEC-II Project Technical Report
98/10/06 16:23

47

The shaded areas mean that their corresponding functions are implemented by additional
control boards.
Station-A implements the device control function group with a CNC board and other
function blocks with a PC-based software control. Station-B is a conventional PC-based
CNC but uses an OSEC specification HMI module and a software-logic for monitoring. It
has servo drives with SERCOS specification so that it is very close to a practical product.
Two stations control the machine tools and can machine the workpieces. Station-C is a
pure software CNC and uses the software-logic for a sequence control. It controls an
instrument machine.

Resource
Manager

EIA
Program

OSEL-X
Program

Resource
Manager

EIA
Program

OSEL-X
Program

Resource
Manager

EIA
Program

OSEL-X
Program

Ethernet

Network
I/F

HMI

Resource
Control

Manual
Control

EIA
Decoder

OSEL
Executor

Machine
Control

Servo
Control

PLC
DI/DO

EIA Decoder
OSEL Executor
Manual Control

Machine Control

Device Control Device Control

EIA Decoder

Manual Control

Machine Control

EIA Decoder
OSEL Executor
Manual Control

Machine Control

Device Control

MELDASMAGIC
[Mistubishi Electric]

Servo Motor
[Mistubishi Electric]

V-MC PV4II-A
[Toyoda Machine Works]

CNC Board
[Toshiba Machine]

SERCOS Servo Motor
[Indramat]

V-MC JRV40
[Toshiba Machine]

DA Board
Counter Board

AC Motor
[Yasukawa Electric]

XY-Table
[Sony Precision Techno.]

Implementation Part
 by Additinal Board

Operation Panel :No.1
Operation Panel :No.2

Operation Panel :No.3

IBM Panel Computer

WindowsNT

IBM Panel Computer

OS/2 Warp

DeskTop PC

OS/2 Warp

Station-A Station-B Station-C

 Figure 6-2 OSEC Implementation Model and Construction of Each Station

From the experience of the exhibition systems, we were able to prove the following
possibilities:
n Software PC-based CNC, by implementing control functions with PC software and

machining experiment using it
n Controller components by confirming compatibility and reusability of modules with OSEC

specifications such as HMI and servo

OSEC-II Project Technical Report
98/10/06 16:23

48

n Construction of realtime control systems using only off-the-shelf parts
n Implementation of open controllers on malti-OSs and multi-platforms
n Description of userÕs machining know-how and its business on Internet
n Internet applications for open manufacturing systems at low cost and using only WWW

and PC standard S/Ws

OSEC-II Project Technical Report
98/10/06 16:23

49

6.1.1 Station-A
 Station-A has two targets.
n Constructing a machine tool using a PC-based controller, and cutting a work piece
n Making use of PCÕs resource as much as possible
Many of the controllerÕs function are made of the software modules of a PC, so necessary
hardware to add to the PC should become very simple. Thus it will be possible to realize
the open, modular and scaleable controller.

(1) Implementation of function module
 The fruits of OSEC activity and off-the-shelf products were used in this controller
as the function modules. This structure enables machine builders, users, and researchers
to build in original functions to a controller.

 Table 6-1 Platform Structure

PC IBM-7344 Pentium (100MHz), HDD 500MB, RAM 32MB, Touch screen
Servo Drive
System

MELDASMAGIC (Mitsubishi Electric)

Feed system
(X,Y,Z)

Drive Units : MDS-A-V Type (Mitsubishi Electric)
Motor : HA Type (Mitsubishi Electric)

Spindle
(SP)

Drive Units : MDS-A-SP Type (Mitsubishi Electric)
Motor : Built-in Motor (Mitsubishi Electric)

I/O Units Remote I/O : FCUA-DX (Mitsubishi Electric)

 (2) Conclusion
 We achieved the above two targets in
this Station-A. Not only ATC (Automatic Tool
Change) and spindle control but also milling,
drilling, and tapping was performed. Many
machining methods were processed by a part
program described by OSEL. And it was
confirmed that many functions of controller could
be performed by PC software. Some problems
remain. The way to control in real time with
certain by combinations of off-the-shelf products
is needed. And the general way to send and
receive a large quantity of information at high
speed between NC and PLC is needed. Thus,
tool selecting, tool changing, and interlock

processing function, which needed NC and PLC connection, were carried out with low
performance.

 Figure 6-3 Overall View of Station-A

OSEC-II Project Technical Report
98/10/06 16:23

50

6.1.2 Station-B
 At Station-B, a panel computer (IBM7344, OS/2) was attached to a vertical
machining center (JRV40 Toshiba Machine) and PC-based CNC was constructed (Figure
6-4).
The following test items were selected for implementation.
n Reusability and sharability of a HMI module by using a MTF tool
n Connection of off-the-shelf servo drive systems through a SERCOS interface
n Connection of an OSEL program through an OSEL-EIA converter
n Real time NC data monitoring through network

(1) Implementation
Station-B was equipped

with a servo interface board in
conformance with SERCOS, and
controlled the off-the-shelf servo
amplifier and motors (supplied from
Indramat) through fiber optical cable.
The panel computer and the CNC
board exchanged data through a
resource manager based on the
MTF. Table 6-2 shows hardware
construction.

 Table 6-2 Platform Structure

PC Pentium 100MHz, HDD 500MB, RAM 24MB
Touch Panel Display (800×600 dots)

Servo Drive System In Conformance to IEC1491(SERCOS)
Optical Fiber Ring (2Mbps)
Servo Amplifiers and Motors (Indramat)

NC Board NC Board : Made by Toshiba Machine (TOSNUC-P)
ISA Bus Interface , PLC Processor Inside

(2) Conclusion
 Many human-machine operational software made separately by different members
were installed within the panel computer as software parts. The ability to select and
execute freely the software parts was confirmed. In addition, the ability to execute basic
milling operations including ATC, while sending the NC data to a network server, was
confirmed.

 　

Figure 6-4 Overall View of Station-B

OSEC-II Project Technical Report
98/10/06 16:23

51

6.1.3 Station-C
 Station-C, as an application example outsides the field of machine tools, controls a
non-contact measuring machine developed by Sony Precision Technology Inc. based on
the OSEC-II architecture. It fulfills 5 function groups with software on PCs with standard
interfaces, and is completely controlled by a software CNC.

 (1) Implementation
 As the interface to sensors
and electrical devices, the general-
purposed counting, D/A and DI/DO
boards are inserted into a PC. The
calculation of the positioning loop is
carried out by a process which is
activated by an operating system at an
interval of 8 msec. A software logic
tool (ISaGRAF) conformed to IEC-
1131 is also used.
This system, using the OS/2 Warp as
its OS, is designed as an instance
model for fulfilling 5 function groups
based on the OSEC-II architecture
with software.

 Figure 6-5 Overall View of Station-C

 Table 6-3 Platform Structure

PC Pentium 133MHz, RAM 32MB, HDD 1.6GB
Servo Drive System Velocity Control, Analog Input
PC-Inserted Boards 4Ch A/B Phase Counting Board

4Ch 16Bit D/A Board
32 Inputs 32 Outputs DI/DO Board

Control BoxPersonal Computer

Ethernet Card

D/A Card

Counter Card

Di/Do Card

CRT Display

Keyboard

Mouse

PC PC

M.P.G.
Jog Switch

Machine

Servo Driver/Motor

Laser Scale

Ethernet

 Figure 6-6 Connection of Hardware Blocks
(2) Conclusion

OSEC-II Project Technical Report
98/10/06 16:23

52

 Through a design and a trial manufacture of the instance example with standard
interfaces and 5 function groups which are defined in OSEC-II, It can be said that the effect
of Ò widening the available choice of methods responding to objects Ó coming from
controllerÕs openness has been verified. It was confirmed that a full-closed positioning
loop servo of 8 msec sampling interval could be constructed on the OS/2 Warp operating
system using the general-purposed inserted boards and servo drivers. It also shows the
feasibility of openness.

OSEC-II Project Technical Report
98/10/06 16:23

53

6.1.4 OSEL Station
 The objectives of demonstration on an OSEL station are to show

l the whole flow of information processing when OSEL is used,
l features of OSEL by a practical demonstration, especially the ease with which a

user can incorporate his/her machining know-how into a program.
Significant information in OSEL machining programs includes machining sequence, cutter
paths, and machining conditions. To make this information understandable, a shape
viewer and some process sheets are used. A CAD tool (CADKEY) is used as the shape
viewer and a spreadsheet (Excel) is used for displaying the process sheets. A workpiece
and the cutter paths are displayed by using CADKEY, and the machining conditions, the
tools, and the machining sequence are displayed on the spreadsheet. Excel is also used
for process optimization.
A demonstration scenario is shown below.
(1) Workpiece is designed by using CADKEY.
(2) Machining features are designated in series by CADKEY.
(3) An OSEL-F machining program is created by using the above data. At this stage,
instance creation of machining features and general machining specifications are
described only in the program.

public class Sample
 public static void main(String args[])
 // Machining features are defined here.
 // m10_4:4-M10 Tap，hole20: D20 through hole
 m10_4.machining();
 hole20.machining();
 }

 Figure 6-7 OSEL-F Machining Program Created by Using CADKEY（Extract）

(4) A process sheet is displayed on Excel to confirm the machining features to be
machined in the OSEL-F program.
(5) The OSEL processing system creates a plan of tools and expands the machining
program written in OSEL-F by using a machining feature class library and a tool class
library.
(6) Since wasteful tool change processes are included in the expanded program, the
number of tool changes is minimized in the machining sequence on the basis of tool
information and Z coordination of tool at which machining starts. The machining program
written in OSEL-F is optimized on the basis of optimized sequence data.

public class Sample
 public static void main(String args[])

 // Machining features are defined here.
 // m10_4:4-M10 tap, hole20:D20 through hole
 // Machining by the center drill
 m10_4.centerdrilling();
 hole20.centerdrilling();
 // Machining by drill D8.6
 Tool drill8 = toolfordrilling(8.6); // Select from a tool library
 m10_4.drilling(drill8);

OSEC-II Project Technical Report
98/10/06 16:23

54

 // Machining by drill D15.8
 Tool drill15 = toolfordrilling(15.8);// Select from a tool library
 hole20.drilling(drill15);
 // Machining by endmill D15
 Tool endmill15 = toolforendmilling(15);// Select from a tool library
 hole20.milling(endmill15);
 // Tapping
 m10_4.tapping();

 }
}

 Figure 6-8 Optimized OSEL-F Process Program (Extract）

(7) An OSEL-X program is generated from the OSEL-F program using the machining
feature class library, the tool class library, and a machine-dependent machining library.
The cutter paths of OSEL-X program are verified on CADKEY.

 Figure 6-9 Verificaiton of Cutter Paths by CADKEY

 Next, to illustrate the merits of OSEL, it is shown that tools can be modified easily.
OSEL allows users to describe their know-how as a program and reuse it. For example,
when a user selects a tool, he/she has to consider many conditions. Once the tools and
their usage conditions have been programmed, an appropriate tool can be selected
automatically afterwards. Moreover, the machining conditions and the cutter paths will be
changed according to the tool selected. In the demonstration, the user changes a tool in a
program and then a simulator written in Java shows that cutter paths are changed
according to the tool.
The demonstration shows that users' machining know-how can be described in a library by
using OSEL and that the use of Java as an implementation language for OSEL allows
machining know-how to be disseminated on networks.

OSEC-II Project Technical Report
98/10/06 16:23

55

6.1.5 Network Stations
 We also study about the utilization of open controllers in both Internet and Intranet
environment. We name the space created from computers and networks ÏInternet Cyber
Factory”.
(1) Implementation
We built trial applications such as a remote monitoring, an operation supervision, an
application for TV conference system, and so on. The network applications were
constructed by applying general-purpose S/W and H/W for PCs and Internet technologies.
Figure 6-10 shows the network system configuration. The stations with the OSEC
controllers, a line database, PCs, and a mobile terminal were networked. Each station
transmitted operating status to the line data base. Simultaneously, WWW browsers or a
spread sheet software at the PCs or the mobile terminal read and displayed information in
HTML format from the line data base. In addition, there were connected line monitoring
TV-s or video communications between floors with a TV conference system. The status
transmission from the controller was done by OFMP (OSEC Floor Management Protocol).

 Figure 6-10 Network System Configuration
(2) Conclusion
 As a result, we can develop the network applications in a short period and at low
cost. The following problems should be considered in the "Internet Cyber Factory".
l Security countermeasures
l Mechanism of commercial transactions via Internet
l Administration of network equipment
l Connection of existing NCs in networks

OSEC-II Project Technical Report
98/10/06 16:23

56

7 Results and Issues

There are four main working groups in OSE (Open System Environment), and
OSE has been able to configure modules, analyze interfaces among them, and to perform
a test for evidence. Then, OSE could gain the following results for OSEC-II.

(1) Development of Human Machine Interface (HMI) System with Machine Frame:
 Each element of machine tools is summarized in an Object Relational Drawing (ORD),

and operation / display class libraries and software development system (Machine
Framework) are developed based on these abstract models (Machine Resource
Object). Also, several examples of machine operation displays are tested and
evaluated. Then, it is proved that we can develop indication and operation displays in
a short time period with a high efficiency by adapting Object Relational Programming.

(2) Development of OSEL Language:
 Language specifications of OSEL, the new NC language, which is available to be

added using process know-how, is analyzed, and three class libraries (tool class
library, class library which depends upon each machine type, and class library which
describes cutting method corresponding to process feature) are tested. Then, an
OSEL program was performed on an actual machine, and the functionality was
verified.

(3) Interface Specifications for Machine Control and Creation of Language Processor:
 Interface specifications to machine control for generating tool paths is defined as an

OSEC API, and then they are implemented with libraries.
(4) Creation of Interface Specifications for Servo Controller:
 The interface with the servo controller is defined as an OSEL-API, and then software

for machine controls and servo controls, meeting the specifications, is developed.
Then, its movement for connection with a servo drive is verified.

(5) Creation of network system using internet technology:
 The network system is tested. This system uses the internet technology.

There are some more issues that need to be resolved:
(1) Since a fusion has become free, inconvenient problems, such as machine suspension

caused by combinations of different parts and modules provided by multiple vendors,
are not addressed here.

(2) Responsibility of accidents caused by system inconvenience; that is to say,
responsibility of products, is not addressed here, either.

(3) It is considered that a merit by reducing production lead-time would be created by
gaining free access to resources on the networks (CAD / CAM, information of production
management, electronic trading, and so on) with connections to internet or intranet.
However, problems on illegal invasion and security matters are not mentioned here.

As future issues, it is necessary to investigate standards of interface between networks
and open controls and to encourage HMI widely.

OSEC-II Project Technical Report
98/10/06 16:23

57

Appendix: Machine Resource Object and Function Block API of OSEC-II
Machine resource object and OSEC-II API based on function blocks are shown in

the following tables. Please refer to the OSEC-II report for the detail information and their
parameters. The API is first version and not yet finish one. Therfore it might be modified
accroding with the progress of OSEC-III project.

1. Machine Resource Objects
1. Basic Domain Class Objects
OsecAlarm Alarm of machine tool class object.

OsecMachine Generic equipment class object It has the methods for starting and stopping. It has also an
alarm list and can provide a method of alarm reset .

OsecNCMachine NC machine tools class object. It has methods for system mode control such as jog and
program machining and remote control.

2. Operation Domain Class Objects

OsecNCResource
Object like a holder to bind many resource objects. Its sub-class can be defined functions
associated with some resource objects. It is also possible to define the resource configuration
each machine tool.

OsecAxis X, Y, Z axis class object. It has sub-class esof translate and rotation axis
OsecLinearAxis Line Axis object class
OsecRotationalAxis Rotational axis class object
OsecSpindle Spindle motor class object
OsecNCDecoder NC decoder class object
OsecEIADataDecoder EIA decoder class object
OsecOSELDecoder OSEL interpreter class object
OsecToolChanger Tool changer class object
OsecToolMagazine Tool magazine class object
OsecPalletChanger Pallet changer class object
OsecCoolant Coolant class object
OsecChipConveyor Chip conveyor class object

OsecPLC PLC class object. It provides functions of download of plc programs and input/output X/Y
signals. Devices except standard resource objects are defined by way of X/Y signals.

OsecNCEngine Class object for motion control. It coordinatesmovement of more than two axis

3. Basic Data Domain Class Objects
OsecRecipeManager Management class object Of database such as tools, tool adjustment, and NC programs
OsecNCProgram NC program class object.
OsecTool Tool class object
OsecToolTable Tool table class object
OsecToolTableItem Element of tool table class object
OsecToolOffsetTable Tool offset table class object
OsecToolOffsetTableItem Element of tool offset table class object

2. Resource Management API
API name Description
OsecRmOpen() Open machine resource
OsecRmClose() Close machine resource
OsecRmGetRunCommand() Get run command
OsecRmGetHoldCommand() Get hold command
OsecRmGetEiaProgram() Get Eia program
OsecRmSetRunStatus() Set run status
OsecRmSetAlarm() Set Alarm
OsecRmGetSingle() Get single block stop
OsecRmGetBlockSkip() Get block skip status
OsecRmGetOptStop() Get optional block skip status
OsecRmSetStopStatus() Set stop status
OsecRmGetReady() Get ready
OsecRmSetFileName() Set program file name
OsecRmGetNcAutoStatus() Get auto-mode status of NC

OSEC-II Project Technical Report
98/10/06 16:23

58

3. Motion Generation API
API name Description
OsecMgenOpen() Open motion generation
OsecMgenClose() Close motion generation
OsecMgenInit() Initialize motion generation
OsecMgenReset() Reset motion generation
OsecMgenReady() Motion generation ready
OsecMgenStart() Start motion generation
OsecMgenStop() Stop motion generation
OsecMgenStep() Step execution
OsecMgenResume() Resume
OsecMgenSetProgram() Set program name
OsecMgenGetProgram() Get program name
OsecMgenSearchBlock() Search program block

(1)OSEL-EX Decoder API
API name Description
OsecOselOpen() Open osel-ex decoder
OsecOselClose() Close osel-ex decoder
OsecOselInit() Initialize osel-ex decoder
OsecOselRun() Run osel-ex program
OsecOselFileOpen() Open osel program and interpreter
OsecOselStep() Step execution
OsecOselExDebug() Set debug display mode
OsecOselSetBreakPoint() Set break point
OsecOselReleaseBreakPoint() Reset break point

(2)EIA Decoder API
API name Description
OsecEiaOpen() OpenEia decoder
OsecEiaClose() CloseEia decoder
OsecEiaInit() initialize decoder
OsecEiaReset() ResetEia decoder
OsecEiaReady() Eia decoder Ready
OsecEiaStart() StartEia Program
OsecEiaStop() StopEia Program
OsecEiaStep() Step execution of Eia program
OsecEiaResume() ResumeEia Program
OsecEiaSetProgram() Set Eia program
OsecEiaGetProgram() Get Eia program
OsecEiaSearchBlock() Search Eia program block

4. Machine Control API
(1)Machine Control API

API name Description
OsecMctlOpen() open an interface of Machine Control module
OsecMctlClose() close an interface of Machine Control module
OsecMctlReady() on/off a ready mode of Machine Control module
OsecMctlCancelBuf() cancel data in command buffer
OsecMctlStart() start interpretation of commands
OsecMctlReset() initialize of Machine Control module
OsecMctlStop() stop interpretation of commands
OsecMctlProgramEnd() set command end

 (2)Mode Control API(Option)
API name Description
OsecMctlModeSingleBlock() on/off a single block mode
OsecMctlModeDryrun() on/off a dry run mode
OsecMctlModeExactStop() on/off an exact stop mode
OsecMctlModeAxisCancel() on/off a cancel mode of axis motion
OsecMctlOverCut() set override value of feed rate
OsecMctlOverPart() set partial override value of feed rate
OsecMctlOverMove() set override value of rapid feed rate
OsecMctlAccurate() set high accuracy machining mode

 (3)Axis Control API
API name Description
OsecMctlAxisProgramOrigin() set origin point at program coordinates

OSEC-II Project Technical Report
98/10/06 16:23

59

OsecMctlAxisWorkOffset() set offset data at work coordinates
OsecMctlAxisMove() rapid feed move command to target position
OsecMctlAxisLine() linear cutting feed move command
OsecMctlAxisCps() cutting feed move command on the line of position data
OsecMctlAxisCpsAdd() add data on the line of position data
OsecMctlAxisWait() wait command for given time
OsecMctlAxisVelocity() move command with directed velocity
OsecMctlAxisOrigin() return command to origin point

 (4)Axis Control API(Option)
API name Description
OsecMctlAxisArc() move command with an arc interpolation
OsecMctlAxisArcVector() move command with an arc interpolation

(3 axis control at the same time)
OsecMctlAxisHelical() move command with a helical interpolation
OsecMctlAxisTap() tapping command
OsecMctlAxisSkip() linear cutting feed move command with skip function

 (5)DI/DO API
API name Description
OsecMctlSetDIDO() set ON/OFF of I/O

 (6)Get Command API
API name Description
OsecMctlGetFreeBufCount() get the size of free area of command buffer
OsecMctlGetUserBufCount() get the size of command buffer
OsecMctlGetAxisStatus() get the axis status
OsecMctlGetPosition() get the present position
OsecMctlGetProgramOrigin() get the origin point of program coordinates
OsecMctlGetWorkOffset() get the offset value of work coordinates
OsecMctlGetBlockNo() get the block number
OsecMctlGetInfo() get the information
OsecMctlGetTargetPosition() get the target position
OsecMctlGetStrokeLimit() get the stroke limit data
OsecMctlGetSoftStrokeLimit() get the soft stroke limit data
OsecMctlGetMAXVelocity() get the data of maximum velocity
OsecMctlGetDiDoStatus() get the status of DI/DO
OsecMctlGetDiDoData() get the data of DI/DO
OsecMctlGetStatus() get the present Machine Control status
OsecMctlGetTheoryPosition() get the theoretical position data

 (7)Alarm Command API
API name Description
OsecMctlSetAlarm() set the alarm information
OsecMctlGetAlarm() get the alarm information

5. Servo Control API
(1)I/F Management API

API name Description
OsecSrvOpen() Open serve control
OsecSrvClose() Close serve control
OsecSrvInit() Initialize servo
OsecSrvSetInfo() Set servo information
OsecSrvGetInfo() Get servo information

(2)Group Management API
API name Description
OsecSrvGrpInit() Initialize servo group
OsecSrvGrpSetInfo() set servo group information
OsecSrvGrpGetInfo() get servo group information

OSEC-II Project Technical Report
98/10/06 16:23

60

(3)Servo Axis Management API
API name Description
OsecSrvAxisInit() Initialize servo axis
OsecSrvAxisSetInfo() set servo axis information
OsecSrvAxisGetInfo() get servo axis information

(4)Buffer Management API
API name Description
OsecSrvGetFreeBufCount() Get free buffer count
OsecSrvGetUsedBufCount() Get used buffer count
OsecSrvCancelBuf() Cancel buffer

(5)Servo Control API
API name Description
OsecSrvErrorReset() Reset servo error
OsecSrvSetSrvOn() Set servo on
OsecSrvSetSrvOff() Set servo off
OsecSrvSetCyclicCmd() Set cyclic command
OsecSrvGetCyclicData() Get cyclic data
OsecSrvSyncroCyclicData() Synchronize cyclic data
OsecSrvWaitEvent() Wait servo event

6. PLC Input / Output API
(1)I/F Management API

API name Description
OsecPlcOpen() Open plc
OsecPlcClose() Close plc
OsecPlcInit() Initialize plc
OsecPlcGetInfo() Get plc information
OsecPlcSetInfo() Set plc information

(2)PLC Input / Output API
API name Description
OsecPlcGetIOData() Get plc-io data
OsecPlcSetIOData() Set plc-io data
OsecPlcGetIDbyName() Get ID by name

